The OutdoorsPlus
Results 1 to 11 of 11

Thread: Nitecore MT2C, MT25 (XP-G R5, 1x18650, 2xCR123A/RCR) Reviews: RUNTIME, BEAMS, VIDEO +

  1. #1

    Wink2 Nitecore MT2C, MT25 (XP-G R5, 1x18650, 2xCR123A/RCR) Reviews: RUNTIME, BEAMS, VIDEO +

    Warning: pic heavy as usual.




    This is my third (and final) review of the "Multi-Task" MT-series lights from Nitecore. In this review, I am comparing the performance of two of the 2xCR123A/RCR, 1x18650 models – the MT2C and MT25. Please see my recent MT1C/MT1A/MT2A and M40 reviews for more details on those models.

    Manufacturer Reported Specifications:
    Note: as always, these are only what the manufacturer reports. To see my actual testing results, scroll down the review.

    Common Specs:
    • LED: CREE XP-G R5
    • Two rapid switching modes suit various user requirements
    • High efficiency current circuit board regulates output
    • User-defined mode allows for customized brightness
    • Anti-rolling design
    • Reverse polarity protection
    • Toughened ultra-clear mineral glass lens with anti-reflective coating
    • HA III Military grade hard anodized aluminum alloy body wih anti-rolling design
    • Purpose-made knurling for better grip
    • Water-resistant to IPX-8 standards
    • Impact resistant to 4.9 ft. (1.5 m)
    • Accessories: lanyard, spare O-ring
    MT2C
    • Output/Runtime: Turbo: 360 lumens (3 hours, 45 min), High: 180 lumens (5 hours), Mid: 70 lumens (15 hours), Low: 10 lumens (75 hours)
    • Peak beam distance: 155 m
    • Peak beam intensity: 6,000 cd
    • Use 1x18650 (Recommended), 2xCR123A (Recommended), or 2xRCR
    • Length x Head Diameter x Tail Diameter: 4.92" x 1" x 1" (125 mm x 25.4 mm x 25.4 mm)
    • Weight: 2.6 oz. (76 g)
    • MSRP: ~$48
    MT25
    • Output and runtime: Turbo: 390 lumens (2 hours), High: 180 lumens (5 hours), Mid: 70 lumens (15 hours), Low: 20 lumens (45 hours)
    • Peak beam distance: 228 m
    • Peak beam intensity: 13,000 cd
    • Use 1x18650 (Recommended), 2xCR123A (Recommended), or 2xRCR
    • Length x Head Diameter x Tail Diameter: 5.59" x 1.33" x 1" (142 mm x 34 mm x 25.4 mm)
    • Weight: 4.39 oz. (124.5 g) Batteries not included
    • Additional accessory: holster
    • MSRP: ~$54

    By the way, the difference in those reported output and runtime specs on max may you give you some pause. The explanation will be provided at the end of this review, after my output and runtime testing …



    All the MT-series lights come in basic display packaging, similar to the recent Nitecore Explorer and SENS series (MT1A shown above as an example). Extras are generally comparable, and include a basic wrist lanyard, extra o-rings and boot cover, removable pocket clip, manual and warranty card. The MT25 also comes with a basic holster with velcroed closing flap (not shown).

    Here’s a quick overview of the family:



    From left to right: Duracell CR123A, AA (NiMH); Nitecore MT1C, MT1A, MT2A, MT2C, MT25, M40, AW Protected 18650 (2200mAh).

    And now a comparison on the MT2C and MT25:




    From left to right: CR123A; AW Protected 18650; Nitecore MT2C, MT25; Lumintop PS20, ED20; Nitecore EC2; Quark Q123-2; Nitecore IFE2; Jetbeam RRT-21.

    All dimensions are given with no batteries installed:

    Nitecore MT2C: Weight: 75.9g, Length: 125.3mm, Width (bezel): 25.5mm
    Nitecore MT25: Weight 124.6g, Length: 142.9mm, Width (bezel): 34.2mm
    Eagletac D25LC2: Weight: 50.0g, Length: 116.3mm, Width (bezel): 22.5mm
    Foursevens Quark Q123-2-X (Regular tailcap): Weight: 44.6g, Length: 112.7mm, Width (bezel) 22.0mm
    Klarus XT11: Weight 133.0g, Length: 148.8, Width (bezel) 35.0mm
    Sunwayman V20C: Weight: 117.4g, Length 133.0mm, Width (bezel) 32.2mm
    Thrunite TN10: Weight: 154.7g, Length: 145.5mm, Width (bezel): 35.1mm
    Zebralight SC600: Weight 87.2g, Length: 107.8mm, Width (bezel) 29.7mm

    MT1C:


    MT25:


    MT1C:


    MT2C/MT25:


    Anodizing is a matte black, with no chips on my samples. Labels are bright white, clearly legible against the dark background. Both models have actual knurling across the tailcap and portions of the battery tube and head (the MT25 has considerably more than the MT2C). Knurling is actually of reasonable aggressiveness, and grip is improved compared to the Jetbeam Backup-series lights which these new Nitecores most closely resemble (i.e., BC- and BA-series lights).

    On the MT2C, there is a reverse-polarity setup in the head, so flat-top cells will not work in these lights (i.e., need a small button top, the same as the MT1C/MT1A/MT2A). The MT25, however, has a spring on the contact board in the head, so flat top cells can be used. Both lights have body tubes wide enough to take high-capacity protected 18650 cells.

    Both lights come with the same removable pocket clip, which is of the standard clip-on variety (i.e., similar to the Jetbeam Performance and Backup series lights).

    Screw threads are standard triangular cut, and seem of good quality. They are also anodized for lock-out at the tailcap. Tailcaps size and threading are identical across the two models (i.e., are interchangeable). Tail switch is a forward clicky, with traditional feel. The Jetbeam Backup and Performance series lights often felt a bit "squishy" in comparison.

    Light can tailstand, but may be a bit wobbly (due to the partial raised areas for the lanyard attachment on the tailcap).

    MT2C:


    MT25:


    The main difference between the lights is the larger head on the MT25. With this comes a larger and deeper reflector (both smooth finish). Here is a close-up of the MT25:



    Note that centering is not necessarily perfect on my MT-series samples, but the MT25 above was pretty good.

    User Interface

    User interface is similar to the Jetbeam "Performance" series (i.e. PA- or PC- series lights). Turn the light on by pressing the tailcap clicky (press for momentary on, click for locked on).

    With the head tight, you get Turbo output. With the head loosened, you get the programmed user-selected state. You select the output mode for this state by soft-pressing the clicky switch from off (or clicking off-on from on). The sequence on is: Hi > Med > Lo > SOS > Strobe, in a repeating loop. The light has mode memory, and saves the last setting used in the head-loosened state. Note that Hi on the user-selected head-loose state is lower than Turbo on the head-tight state (i.e., there are four defined output constant modes).

    Note that the MT-series lights do not suffer from the programming glitch noted on the Jetbeam Performance series lights, where rapid flashing of the tailcap in Turbo could alter the saved state of the user-selected mode. The MT-series lights all performed as expected (i.e., memory mode remains constant, no matter what happens in the Turbo mode).

    For more information on the light, including the build and user interface, please see my new video overview:



    As always, videos were recorded in 720p, but YouTube typically defaults to 360p. Once the video is running, you can click on the configuration settings icon and select the higher 480p to 720p options. You can also run full-screen.

    PWM/Strobe

    Nitecore claims that the MT-series lights are current controlled, and I believe that is true. However, there is a re-occurring signal pattern on the Lo/Med/Hi levels (but not Turbo) for all members of this family. Here's a representative sample:

    MT2C Hi:


    MT25 Hi:


    Please note that this "zigzag" pattern is most definitely NOT pulse-width modulation (PWM). I have tested half-a-dozen MT-series lights right now, and my oscilloscope shows this consistent triangular circuit signal at somewhere between ~950-1050 Hz on the Lo/Med/Hi (but not Turbo) of each model.

    Rest assured, it is certainly not as visible as 1kHz PWM would be. I've noted in the past that visual flicker detection increases on PWM lights as you go to lower outputs (even when you keep the PWM freq constant). Part of this may simply be due to different flicker detection thresholds at different intensities, but I suspect it is due in part to the pulse-width changes in the PWM wave (i.e., the shorter "on" / longer "off" phase in the PWM signal at low intensities is more noticeable for some reason). In the case here, the zigzag signal is constant at all outputs (i.e., it is pulse-constant), with a consistent slope (i.e., it is waveform-constant). This appears to drastically reduce the "noticeability" of the signal compared to PWM.

    Also, I have noted that this signal intensity is quite variable across my MT-series samples (i.e., it is not a full on/off signal, and its amplitude varies considerably). Even with the MT1C on 1xRCR (my most prominent example), the signal is so weak that I cannot see any evidence of it visually on any mode, except when shining on a fan (and even then is fairly mild). It is certainly not visible in actual use (and as everyone here knows, I am particularly sensitive to PWM flicker ).

    Again, the point here is that the M-series is indeed current-controlled, and you are highly unlikely to be able to detect any sign of this reoccurring circuit signal.

    MT2C Strobe:


    The MT2C and MT25 have the same strobe pattern, where the lights alternate rapidly between two fast frequencies (basically, ~11 Hz and ~16 Hz), in a fairly random way. In other words, there was ~90msec or ~60msec pause between each pulse, but it seemed pretty random which one would occur.

    This is different from the other MT-series lights I tested. The MT40 did something similar, except the timing between the two frequencies was consistently alternating (i.e., 90msec, then 60msec, then 90msec, then 60msec, etc.).

    The MT1C/MT1A/MT2A were all consistent with each other, but different from the MT40 or MT2C/MT25. In those cases, the three models showed a typical "oscillating" strobe pattern, switching between ~22 Hz and ~12 Hz every 2 secs. Those three lights were also unusual as the individual pulses where longer in duration than typical.

    I am not sure why the variation between models, but all are fairly disorienting.

    Beamshots:

    All lights are on Max output on 1x AW protected 18650 (2200mAh). Lights are about ~0.75 meter from a white wall (with the camera ~1.25 meters back from the wall). Automatic white balance on the camera, to minimize tint differences.

















    The MT25 is cleary "throwier" than the MT2C, as you would expect.

    Testing Method:

    All my output numbers are relative for my home-made light box setup, a la Quickbeam's flashlightreviews.com method. You can directly compare all my relative output values from different reviews - i.e. an output value of "10" in one graph is the same as "10" in another. All runtimes are done under a cooling fan, except for any extended run Lo/Min modes (i.e. >12 hours) which are done without cooling.

    I have devised a method for converting my lightbox relative output values (ROV) to estimated Lumens. See my How to convert Selfbuilt's Lightbox values to Lumens thread for more info.

    Throw/Output Summary Chart:

    My summary tables are reported in a manner consistent with the ANSI FL-1 standard for flashlight testing. Please see http://www.flashlightreviews.ca/FL1.htm for a discussion, and a description of all the terms used in these tables.







    Consistent with my other MT-series reviews, the Nitecore output and throw specs seem reasonably accurate, if a bit conservative.

    But as an initial observation, note that my MT2C was actually marginally brighter than the MT25 (the specs have it the other way around). I will discuss output a little further on, after I compare the runtimes (scroll down for my estimated lumen summary tables and discussion at the end of the review).

    In terms of throw, the MT25 clearly throws further, thanks to the larger head and reflector.

    Output/Runtime Comparison:










    First comment to make is that there is a very distinct difference in the step-down output levels of the MT2C and MT25 on Turbo. Although my MT2C is a bit brighter initially, it drops by approximately one third (~33%) after 3 mins. In contrast, the MT25 only drops by ~10% after 3mins. As a result, the MT25 stays brighter longer – but the MT2C has longer overall runtime. This effect was consistent across all battery types tested.

    Otherwise, output/runtime performance is what I would expect for a good current-controlled light, comparing very well to other XP-G R5-equipped lights. Overall runtime specs from Nitecore seem good, considering the higher stated battery capacities used in their testing (and ANSI FL-1 standard of time to 10%).

    General Output Comparison:

    To better allow you compare output at all levels on all lights, below are detailed tables for each model, on all supported battery types. I have indicated the manufacturer's specs for the identified cell type.





    Once again, in general terms, Nitecore seems to be fairly accurate in their reporting of relative output spacing.

    Note however the difference in relative output after step-down occurs on Turbo on the two lights. This is why the MT2C has much longer runtime specs than the MT25, despite having initially similar output. When you take into consideration the lower output of the MT2C after step-down, the extended runtime makes sense (and is consistent with my runtime findings above).

    Potential Issues

    There is a regular signal at ~1 kHz on all the MT-series lights, but it is not PWM, and it is generally not perceptible. I could see no sign of it visually on my samples, which were flicker-free at all levels. Output/runtime efficiency is very good, in keeping with other current-controlled lights.

    Because of the relatively deep and smooth reflectors, you may notice some centre beam artifacts on these lights (i.e., relative dark spot/band in the centre of the hotspot). This is variable on my samples, but is not uncommon on XP-G lights with these types of reflectors.

    Although initial output on Turbo is comparable between the lights, the MT2C steps down by ~33% after 3mins for extended runtime, while the MT25 only steps down by ~10%.

    Preliminary Observations

    As mentioned in my earlier reviews, the new Nitecore "Multitask" MT-series lights remind me a lot of the JetBeam "Backup" and "Performance" series lights (specifically, the appearance of the Jetbeam BA/BC-series lights, and the functionality of the PA/PC-series).

    Build-wise, the MT-series is closer to the Jetbeam Backup series, but with upgrades - most obvious is the generous supply of knurling now. The MT-series still has traditional triangular cut screw threads, but feel is good. The switch has a better feel than the previous Jetbeam lights (which were a bit squishy), and you have easier access to the button now.

    The main difference between the MT2C and MT25 (both 2xCR123A/RCR, 1x18650 lights) is the size of the head/reflector – with the larger MT25 having greater throw than the more narrowly cylindrical MT2C. Note the beam pattern is fairly throwy for all the MT-series lights, due to the relatively deep and smooth reflectors (which can lead to some artfiacts). But the MT25 definitely stands out as the "throwier" version in this battery class.

    There is also a more subtle circuit difference in terms of max output regulation and runtime between the lights. After 3 mins continuous runtime, both lights step-down – but the MT2C steps down further than MT25, providing extended runtime for the MT2C. Otherwise, the two lights are very similar in their relative output level spacings and efficiency/performance (which is consistent with a good current-control circuit).

    The interface of all the Multitask-series is very similar to the Jetbeam Performance series lights. With the head loosened, you similarly have access to five modes (Hi > Med > Lo > SOS > Strobe), with mode memory. While more sophisticated than the Backup series, I am never a fan of blinky modes on the same sequence as constant output modes. At least they corrected the Jetbeam Performance series programming glitch that allowed the mode memory to change under certain conditions.

    The MT2C and MT25 are pretty equivalent performers – it really comes down to what sort of beam pattern you are looking for. As I've said before, the MT-series is a definite step-up from the earlier Jetbeam Backup series (but with comparable price), with a lot of similarities to the Performance series. Please see my MT1C/MT1A/MT2A and MT40 reviews for more for info on those models.

    ----

    MT2C, MT25 provided by Nitecore for review.
    Full list of all my reviews: flashlightreviews.ca. Latest hobby: whiskyanalysis.com. Latest flashlight review: Thrunite TN42.
    Gratefully accepting donations to my battery fund.

  2. #2

    Default Re: Nitecore MT2C, MT25 (XP-G R5, 1x18650, 2xCR123A/RCR) Reviews: RUNTIME, BEAMS, VID

    Thanks for the review.
    Ah i see, Nitecore provided you with the full MT-series, nice!!

    I am confident that we will see a TM15, provided by Nitecore, review soon too?

  3. #3

    Default Re: Nitecore MT2C, MT25 (XP-G R5, 1x18650, 2xCR123A/RCR) Reviews: RUNTIME, BEAMS, VID

    Quote Originally Posted by shelm View Post
    Thanks for the review.Ah i see, Nitecore provided you with the full MT-series, nice!!
    I am confident that we will see a TM15, provided by Nitecore, review soon too?
    Working on the TM15, but have a couple of other lights to post first.

    I don't have the MT-26, so don't know what it's runtime characteristics are like, but the specs seem fairly accurate for the models I have tested.
    Full list of all my reviews: flashlightreviews.ca. Latest hobby: whiskyanalysis.com. Latest flashlight review: Thrunite TN42.
    Gratefully accepting donations to my battery fund.

  4. #4

    Default Re: Nitecore MT2C, MT25 (XP-G R5, 1x18650, 2xCR123A/RCR) Reviews: RUNTIME, BEAMS, VID

    Thanks for the review! I couldn't wait so I ordered mine a couple of days ago.

  5. #5

    Default Re: Nitecore MT2C, MT25 (XP-G R5, 1x18650, 2xCR123A/RCR) Reviews: RUNTIME, BEAMS, VID

    Is it possible to disassemble the head in MT25? It looks like there's no removable bezel and I'd like to know is it possible to swap the emitter. It would be a beast with XP-G2.

  6. #6

    Default Re: Nitecore MT2C, MT25 (XP-G R5, 1x18650, 2xCR123A/RCR) Reviews: RUNTIME, BEAMS, VID

    Quote Originally Posted by phantom23 View Post
    Is it possible to disassemble the head in MT25? It looks like there's no removable bezel and I'd like to know is it possible to swap the emitter. It would be a beast with XP-G2.
    The head doesn’t come apart by hand, but may open up with strap wrenches.
    Full list of all my reviews: flashlightreviews.ca. Latest hobby: whiskyanalysis.com. Latest flashlight review: Thrunite TN42.
    Gratefully accepting donations to my battery fund.

  7. #7
    Unenlightened
    Join Date
    Oct 2012
    Location
    Chugiak, Alaska
    Posts
    7

    Post Nitecore MT2C and MT25

    Thank you for a very informative presentation.

    I ordered the NITECORE MT2C and MT26 today based on your data.

    I wonder how the NITECORE MT2C compares with the FENIX PD32.

  8. #8
    Flashaholic*
    Join Date
    Jan 2012
    Location
    European Union
    Posts
    1,701

    Default Re: Nitecore MT2C and MT25

    The MT2C and the PD32 are in the same flashlight category but their UI is quite different.

    The PD32 has only one state (no head loosening) with memory and a side switch. Also it has hidden flashing modes but cannot tailstand.
    The MT2C has two states (head tightened and loosened) with memory only with the head loosened. The flashing modes are not hidden but it can tailstand.

    Also, according to this review the MT2C it has a big stepdown and I don't know if the PD32 has one too. Also, assuming the Fenix data is accurate and comparable to the data in this review, the MT2C would have better throw than the PD32.

    The MT2C also costs one third less than the PD32.

  9. #9
    Unenlightened
    Join Date
    Jan 2013
    Location
    Massachusetts
    Posts
    12

    Default Re: Nitecore MT2C and MT25

    Hello, for the MT2C is the 3.45 runtime stay as 3.45 if you turn it on and off? If it's not on continuously? And also how does it work with rechargeable CR123's (Or is that what RCR means?)?

  10. #10

    Default Re: Nitecore MT2C and MT25

    Quote Originally Posted by Mattylav View Post
    Hello, for the MT2C is the 3.45 runtime stay as 3.45 if you turn it on and off? If it's not on continuously? And also how does it work with rechargeable CR123's (Or is that what RCR means?)?
    The 3hr 45min spec (on Turbo) is a bit optimistic in my view (i.e., I got an hour less on 2200mAh 18650). But in any case, that is based on continuous runtime. If you turned it off and on, the total runtime would be shorter. The reason for this is that the light runs brighter for the first 3 mins before stepping down. If you turn off/on repeatedly, you will drain the battery faster due to all those re-started higher initial levels. See my runtime graphs for more info.

    And yes, RCR = RCR123A = rechargeable CR123A.
    Full list of all my reviews: flashlightreviews.ca. Latest hobby: whiskyanalysis.com. Latest flashlight review: Thrunite TN42.
    Gratefully accepting donations to my battery fund.

  11. #11
    Flashaholic*
    Join Date
    Jan 2012
    Location
    European Union
    Posts
    1,701

    Default Re: Nitecore MT2C and MT25

    After selfbuilt's excellent review one year ago I had decided I'd pass on theses lights as I already owned some of the JETBeam Performance series lights.
    Never say never when it comes to flashlights: this week I bought an MT2C and MT26 to use as car lights and received them today. Overall, I'm positively impressed, the lights have a good feel and seem very well built: considering the low price they are better than I expected and so far I'm happy I got them. The build quality is not as good as my Fenix LD, PD, and TK lights but threads for example are longer than on the Klarus XT lights.
    I was worried about artifacts but my samples have very clean beams: both lights have slight dark spots in the middle of the hotspot but they are barely noticeable - a tad more on the MT26 - and you have to focus to notice them.
    Though I never minded the squishy feeling of my PA10 and PA20, I find the feel and feedback of forward clicky on the MT lights to be nicer.
    The anti-roll designs are also very good, especially on the MT2C which has a huge bolt and really keeps the light from rolling. It's less good on the MT26 but still pretty decent even without clip (in the box I did not find any MT26 accessories).

    The only gripe I have is regarding the UI. I knew what to expect from the JETBeam Performance series lights and the UI is the same without the notorious glitch. First of all, if you soft-press twice within over 3 seconds or nearly 4, it changes mode: considering you can change mode by soft-pressing the forward clicky, I find a 3/4 second interval to re-use the momentary on an eternity. If they had simply shortened the interval to 1 second or even better 0.5 seconds, they would have made the momentary on so much more usable even on the user-defined state.

    Also, the glitch that affected the Performance series lights has been fixed but I noticed they did not completely isolate mode changing between head-tightened and head-loosened states. I'll explain: if I use the momentary on with the head-tightened and then within four seconds I loosen the head and use momentary on only once again, the light will cycle to the next output level from the one I had previously saved. It's not a big deal as I don't think using momentary on with both the head tightened and then the head loosened within 4 seconds is an something users would do very often; again, this could be easily resolved by reducing the time interval for mode changing from 4 to 1 or 0.5 seconds.

    My main EDC for the last year and half has been the PD31 with a PD32 tailcap: I'm basically used to a very similar UI! The only differences are the lack of mode memory and the strobe being on the head tightened state. However, with the head loosened the time interval for changing modes is 2 seconds at most: still a long interval but I've gotten used to it and can use momentary on without accidentally changing modes. The lack of mode memory also helps in that respect: even if I accidentally cycle from Low to Medium I don't have to cycle through all the modes back to Low, I can just switch off the light for two seconds and be on Low again without going through the pain of SOSing myself.

    The second gripe is the brightness of the Low mode on the MT2C selfbuilt had reported: I was hoping that after one year Nitecore would have either updated the MT2C specs or fixed the Low mode back to the claimed ANSI 10 lumens. Well apparently they haven't done either because the Low on my MT2C is as bright as the Low on the MT26 rated at 25 Ansi lumens and even slightly brighter than the Medium on my Fenix LD10 rated at 30 Ansi lumens. Personally I find a 20>40 lumens brightness level very usable for a multitude of daily tasks. For a lot of other uses though we all know is simply too bright. Aside from reducing the cycling interval to 0.5, Nitecore could simply replace the SOS with a sub-lumen level making the MT2C much more appealing as an EDC light! I'm not sure whether introducing a moonlight mode would affect the price point of the MT lights which, considering the overall quality, is one of the factors that make these lights attractive. I'm sure though a lot of people would be willing to pay an extra 10% or even %15 to have a usable moonlight instead of an unhidden SOS!

    A last consideration: I'm still not convinced the Hi > Med > Low > Flashing modes is the best sequence. If when on Low you cycle through accidentally you find yourself with 360 (430 tested by selfbuilt). Even if they replaced the SOS with a moonlight there would still be a risk of accidentally cycling through from Low to the full brightness strobe. The only users I can imagine would find the Hi > Med > Low > SOS > Strobe are those with LE, security, or self-defence in mind: for those purposes having Strobe followed by High probably makes more sense than having strobe followed by Low or even worse Moonlight. For general I reckon a Low > Med > Hi > Flashhing Modes would still be a more practical sequence for most users whether flashing modes are hidden or not hidden. In any case the SOS should be hidden or removed as two flashing modes in a row are just too much.

    As for the flashing modes: the MT26 strobe is quite different from the on the one on the MT2C: the MT26 has a similar strobe to my Fenix TK12 but with a visually much faster frequency.

    As I said above, I'm positively impressed with the lights and I plan to keep them in the cars so I don't have to worry about losing my Fenix lights that have a much higher personal value, cost more, and would be very hard to replace as the Fenix models I own have all been discontinued.

    Considering the competitive prices, I find the MT lights to be very good "higher-end budget" lights: their RRP is roughly %30 cheaper than Fenix models in the equivalent category. I do think that by reducing the time interval for cycling through the different modes and introducing a lower low - anywhere from from moonlight up to 3 lumens - would make these lights much much more popular. No regrets in having purchased them but I thought I'd share these observations in this thread. I am also thinking of sending feedback to Nitecore and suggest the improvements I mentioned in case they decide to update their MT series.
    Last edited by Labrador72; 01-24-2014 at 03:32 PM.

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •