Doug S
Flashlight Enthusiast
I recently purchased one of the ArcMania microconverter boards from Wayne's Sandwich Shoppe. The board is nicely laid out and the construction quality is high. It is hard to imagine making a convertor of this type any smaller without compromising performance or layout quality. Here is performance data using a very low Vf 1W luxeon as a load.
<ul type="square">
Vin(V)**Iin(mA)**Vout(V)**Iout(mA)**Eff(%)
3.02------357-------3.14-------298--------87.6
2.00------365-------3.02-------186--------77.7
1.503-----380-------2.97-------137--------72.0
1.305-----380-------2.93-------114--------68.2
1.199-----376-------2.91-------102--------66.6
1.100-----363-------2.89-------087--------63.8
1.001-----308-------2.84-------061--------57.0
0.897-----158-------2.77-------030--------59.4
0.875-----103-------2.74-------021--------64.6
0.85 shuts off
[/list] Operating frequency ranged from 360kHz at 2.00V to 140kHz at 1.001V. Those checking my math from the raw data above will find that my efficiency data is 0.8% higher than computed. The efficiency column contains a 0.8% correction resulting from cross calibration of the various instruments used.
Notice the very flat input current from 1.1V to 3.0V. This is a Zetex 300 design. It incorporates a trick to flatten the input current vs voltage characteristic. The Isense pin is biased by a divided fraction of the input voltage. This results in a flatter Iin vs Vin curve than a dumber converter such as used in the Dorcy 1AAA or the ARC 1AAA.
For comparison, here is data for the Dorcy 1AAA converter powering a considerably higher Vf luxeon:
<ul type="square">
Vin(V) * Iin(mA) * Vout(V) * Iout(mA) * Eff(%)
0.503----41.1-------2.74--------5.7-------74.7
.799-----74.2-------2.86-------15.7-------75.9
.998-----112--------2.93-------28.8-------74.7
1.106----212--------3.05-------57.7-------74.3
1.196----295--------3.11-------81.1-------70.7
1.300----392--------3.17------108.5-------66.7
1.406----486--------3.19------137.6-------63.4
1.500----536--------3.20------157.5-------61.9
[/list]
Notice that the Iout of the Dorcy varies much more in the 1.1V to 1.5V range. The Dorcy does continue to operate down to much lower voltages and its efficiency is better at the lower end of the Vin range.
A couple of ARC 1AAA circuits are on the way to me and I will post equivalent data for the ARC circuit when available.
<ul type="square">
Vin(V)**Iin(mA)**Vout(V)**Iout(mA)**Eff(%)
3.02------357-------3.14-------298--------87.6
2.00------365-------3.02-------186--------77.7
1.503-----380-------2.97-------137--------72.0
1.305-----380-------2.93-------114--------68.2
1.199-----376-------2.91-------102--------66.6
1.100-----363-------2.89-------087--------63.8
1.001-----308-------2.84-------061--------57.0
0.897-----158-------2.77-------030--------59.4
0.875-----103-------2.74-------021--------64.6
0.85 shuts off
[/list] Operating frequency ranged from 360kHz at 2.00V to 140kHz at 1.001V. Those checking my math from the raw data above will find that my efficiency data is 0.8% higher than computed. The efficiency column contains a 0.8% correction resulting from cross calibration of the various instruments used.
Notice the very flat input current from 1.1V to 3.0V. This is a Zetex 300 design. It incorporates a trick to flatten the input current vs voltage characteristic. The Isense pin is biased by a divided fraction of the input voltage. This results in a flatter Iin vs Vin curve than a dumber converter such as used in the Dorcy 1AAA or the ARC 1AAA.
For comparison, here is data for the Dorcy 1AAA converter powering a considerably higher Vf luxeon:
<ul type="square">
Vin(V) * Iin(mA) * Vout(V) * Iout(mA) * Eff(%)
0.503----41.1-------2.74--------5.7-------74.7
.799-----74.2-------2.86-------15.7-------75.9
.998-----112--------2.93-------28.8-------74.7
1.106----212--------3.05-------57.7-------74.3
1.196----295--------3.11-------81.1-------70.7
1.300----392--------3.17------108.5-------66.7
1.406----486--------3.19------137.6-------63.4
1.500----536--------3.20------157.5-------61.9
[/list]
Notice that the Iout of the Dorcy varies much more in the 1.1V to 1.5V range. The Dorcy does continue to operate down to much lower voltages and its efficiency is better at the lower end of the Vin range.
A couple of ARC 1AAA circuits are on the way to me and I will post equivalent data for the ARC circuit when available.