[FONT=Verdana, Arial, Helvetica, sans-serif]No trickle charge is applied because lithium-ion is unable to absorb overcharge. A continuous trickle charge above 4.05V/cell would causes plating of metallic lithium that could lead to instabilities and compromise safety. Instead, a brief topping charge is provided to compensate for the small self-discharge the battery and its protective circuit consume. Depending on the battery, a topping charge may be repeated once every 20 days. Typically, the charge kicks in when the open terminal voltage drops to 4.05V/cell and turns off at a high 4.20V/cell.
What happens if a battery is inadvertently overcharged? lithium-ion is designed to operate safely within their normal operating voltage but become unstable if charged to higher voltages. When charging above 4.30V, the cell causes plating of metallic lithium on the anode; the cathode material becomes an oxidizing agent, loses stability and releases oxygen. Overcharging causes the cell to heat up. If left unattended, the cell could vent with flame.
Much attention is focused to avoid over-charging and over-discharging. Commercial lithium ion packs contain a protection circuits that limit the charge voltage to 4.30V/cell, 0.10 volts higher than the voltage threshold of the charger. Temperature sensing disconnects the charge if the cell temperature approaches 90°C (194°F), and a mechanical pressure switch on many cells permanently interrupt the current path if a safe pressure threshold is exceeded. Exceptions are made on some spinel (manganese) packs containing one or two small cells.
Extreme low voltage must also be prevented. The safety circuit is designed to cut off the current path if the battery is inadvertently discharged below 2.50V/cell. At this voltage, most circuits render the battery unserviceable and a recharge on a regular charger is not possible.
There are several safeguards to prevent excessive discharge. The equipment protects the battery by cutting off when the cell reaches 2.7 to 3.0V/cell. Battery manufacturers ship the batteries with a 40% charge to allow some self-discharge during storage. Advanced batteries contain a wake-up feature in which the protection circuit only starts to draw current after the battery has been activated with a brief charge. This allows prolonged storage.
In spite of these preventive measures, over-discharge does occur. Advanced battery analyzers (Cadex C7000 series) feature a 'boost' function that provides a gentle charge current to activate the safety circuit and re-energize the cells if discharged too deeply. A full charge and analysis follows.
If the cells have dwelled at 1.5V/cell and lower for a few days, however, a recharge should be avoided. Copper shunts may have formed inside the cells, leading a partial or total electrical short. The cell becomes unstable. Charging such a battery would cause excessive heat and safety could not be assured. [/FONT]