[ QUOTE ]
js said:
Put it on a variable DC bench voltage supply and turn it up until it blows
[/ QUOTE ]
This is actually a very good method. The bulb blows at the filament's melting point. And staying a little bit below that will give the highest efficiency.
Running a bulb at the edge needs a doft start and a very constant filament temp (=power delivered to the bulb).
The best method will be to measure the filament's temperature with an appropriate radiation thermometer.
But it also could be done by a side by side compare with a known bulb.
[ QUOTE ]
Filaments are almost always wound in a circular spiral coil (OK, not a great description, but you know what I mean). Find the circumference of the end of the coil and multiply it times the number of turns, and you have the approximate length of the filament.
[/ QUOTE ]
All the filaments I know are not wound in a spiral way, they use a helix instead .-)
Further most bulbs use a double helix, that means what you think is the filament, is actually another helix.
Phillips one time even had a triple helix.
And even further on, there is no real 'nominal voltage' for an incandescent bulb. It always depends on the lifetime you want to have. What a 12V bulb is for one, it is a 15V for the other .-)
And sometimes the nominal voltage is given for the general public and has little to do with the voltage the bulb is usually running at (see the relabeling of the Petzl bulbs and the usual car bulbs labeled for 12V, but rated for 14V)
And it is not necessarly true that, for example, a 12V bulb has twice the filament length as a 6V bulb (both for the same current, glass envelope size and lifetime).