V54 Sky Lumen 2 (SL2) dedome (XM-L2 PDTc, 1x18650) review: RUNTIMES, BEAMSHOTS, more+

selfbuilt

Flashaholic
Joined
May 27, 2006
Messages
7,008
Location
Canada
V54-SL2%20018.jpg

V54-SL2%20019.jpg


I've reviewed a number of modded lights from Vinh Nguyen here on CPF (vinhnguyen54), and all have been excellent quality. Vinh has recently branched out with a set of new models under his own name. :wave:

In this review, I have his Sky Lumen 2 (SL2) model (aka the "Nano Searchlight"), featuring the his DriverVN circuit. You can see a discussion of his original DriverVN circuit here (which is still available, if desired). As with all Vinh lights, there are always several options available for you to choose from when assembling your build. Let's go through all the details …

Stock Manufacturer Specifications:
(note: as always, these are simply what the manufacturer reports).

  • Similar to X2vn but with improvements
  • All reflectors now are light OP to improved throw while retaining perfect beam
  • "HOT" triangle warning will always line up with branding
  • DriverVN is ideal for this light (note V1 is still available as an option, comes with V2 by default)
  • DriverVN Can take 1 li-ion cell for XPG2 or XML2 (~2.5-4.2V)
  • Reverse clicky switch handles current great and is perfect for mode switching
  • All fit and finished are carefully inspected to ensure top notch
  • A great EDC and WOW light due to # of modes and max performance
  • All springs and connections are reinforced for impact resistance and high current draw
  • Great fit & finished with a tough body
  • High drained 18650 required for max performance
  • $65 Single Mode Max Brightness with XML2 U2 6500K Dome On
  • + $35 for DriverVN
  • + $10 for XML2 2900K HCRi, 4000K, or 5000K
  • + $15 U3 PDTc (Most throw with a coolish tint)
  • + $20 Extra .3oz of copper HS
  • + $20 Dark heat treated pocket clip
  • + $12 International Shipping
  • + $5 "V54" hand engraved
  • + $12 for anode stripped to bare silver aluminum
V54-SL2%20017.jpg


As you can see on the card above, my sample is a "premium" version, featuring the XM-L2 U3 PDTc (premium dedome tint – cool white), copper heatsink, and V54 hand-engraved. There was no box on my review sample, just a basic wrist lanyard and instruction sheet. Everything was securely packaged in layers of bubble-wrap, in a padded envelope.

V54-SL2%20008.jpg

V54-SL2%20013.jpg

V54-SL2%20001.jpg

From left to right: Keeppower Protected 18650 3100mAh; V54 Sky Lumens 2; Zebralight SC600-II; Thrunite Neutron 2C 2014; Olight S30R, Eagletac D25 Tactical; Fenix PD35.

All dimensions directly measured, and given with no batteries installed (unless indicated):

V54 Sky Lumens 2: Weight: 83.1g, Length: 119.2mm, Width (bezel): 24.0mm
Eagletac D25LC2: Weight: 50.0g, Length: 116.3mm, Width (bezel): 22.5mm
Eagletac G25C2-II (stock): Weight 141.0g, Length: 150.6mm, Width: 39.6mm
Eagletac S200C2vn (V54 mod): Weight: 168.7g, Length: 155.0mm, Width: 47.0mm
Eagletac TX25C2: Weight 93.6g, Length: 120.4mm, Width (bezel): 31.6mm
Fenix PD35: Weight: 82.7g, Length: 138.1mm, Width (bezel): 25.4mm
Olight M22: Weight: 148.4g, Length: 144.8mm, Width (bezel): 41.2mm
Nitecore P12 2015: Weight: 88.7g, Length: 139.5mm, Width (bezel): 25.5mm
Skilhunt DS20: Weight: 53.8g, Length: 110.0mm, Width (bezel): 24.0mm
Thrunite TN12-2014: Weight: 80.0g, Length: 140.5mm, Width (bezel): 25.4mm
Zebralight SC600 II: Weight 79.3g, Length: 101.8mm, Width (bezel) 29.7mm
Zebralight SC62: Weight: 42.3g, Length: 96.5mm, Width (bezel): 23.2mm, Width (max) 26.1mm

Weight is a touch higher than most lights of this size, likely due to solid body and extra copper heatsink. :) Keep in mind that the SL2 comes with a clicky switch (i.e., most of the competition in this size use only an electronic switch).

V54-SL2%20020.jpg

V54-SL2%20022.jpg

V54-SL2%20021.jpg


Physically, the SL2 is a very sturdy yet compact build. The light comes in a matte black finish (presumed hard anodized), with no chips on my sample. Hand feel is good, with knurling present over most of the light. Knurling is of reasonable aggressiveness (i.e., above average), helping with grip. I haven't seen the available pocket clip, but that should help further with grip (and serve as an anti-roll feature).

All labels are clear. I personally like the hand-engraved "V54" logo on the head, to identify the source of the light. ;)

The SL2 uses the the DriverVN circuit. This circuit can take 1x18650 Li-ion only, when coupled with XP-G2 or XM-L2 emitters (~2.5-4.2V), as is the case here. On lights with higher output emitters, a different version of the DriverVN typically allows 2x Li-ion cells (i.e., when included with XHP50, XHP70, or MK-R emitters - ~5V-8.4V)

The tailcap is a reverse clicky switch, with traditional feel. I realized some may be initially disappointed with the lack of a forward clicky – but a reverse clicky works better with the DriverVN interface. It also better handles the high current modes in this light (i.e., according to Vinh, even the McClicky wouldn't last long in this light). Keep in mind that most high output lights in this size use an electronic switch (with a standby drain).

As with many of Vinh's mods, the springs located in the tailcap and on the head contact board both have low-resistance wires soldered through. This facilitates the transmission of heavy drain current.

There are raised areas on two sides of the switch, serving as lanyard attachment points (and allowing for stable tailstanding). Screw threads are regular triangular cut, and anodized in the tail region for lock-out.

There is no bezel ring – the lens appears to be mounted from inside the head.

V54-SL2%20023.jpg

V54-SL2%20003.jpg


My sample of the SL2 features the dedomed XM-L2 U3 (PDTc). Although the reflector is fairly small and lightly textured, it is reasonably deep for this size light. Coupled with a dedomed emitter, I would expect excellent throw performance. Scroll down for beamshots. :wave:

Overall impression of the physical build is that the SL2 is a study and solid design, if somewhat Spartan (i.e., "no frills"). I like the slightly extra "heft" in the head, likely due to the integrated copper heatsink.

User Interface

The Sky Lumen 2 uses the 1xLi-ion configuration of the DriverVN circuit. My sample came with the V1 DriverVN, but the V2 is apparently now standard (V1 available as an option).

Turn the light on by a click-release of the tailswitch (i.e., reverse clicky switch). The light comes on in the first output mode of its pre-defined set (with or without memory, as desired).

To explain how that works, here are the 24 selectable groups of output modes. Note these have been updated from the original DriverVN V1.

DriverVN V1:

1 Mode
1. 100%

2 Modes
2. 10% - 100% | Memory
3. 10% - 100% | No Memory
4. 100% - 10% | No Memory

3 Modes
5. 1% - 25% - 100% | Memory
6. 1% - 25% - 100% | No Memory
7. 100% - 25% - 1% | Memory
8. 100% - 25% - 1% | No Memory

4 Modes
9. ML - 2% - 25% - 100% | Memory
10. ML - 2% - 25% - 100% | No Memory
11. 100% - 25% - 2% - ML | Memory
12. 100% - 25% - 2% - ML | No Memory

5 Modes
13. 1% - 5% - 15% - 40% - 100% | Memory
14. 1% - 5% - 15% - 40% - 100% | No Memory
15. 100% - 40% - 15% - 5% - 1% | Memory
16. 100% - 40% - 15% - 5% - 1% | No Memory

6 Modes
17. ML - 1% - 5% - 15% - 40% - 100% | Memory
18. ML - 1% - 5% - 15% - 40% - 100% | No Memory
19. 100% - 40% - 15% - 5% - 1% - ML | Memory
20. 100% - 40% - 15% - 5% - 1% - ML | No Memory

Disco
21. Strobe
22. 100% - Strobe | No Memory
23. 100% - Blink | No Memory
24. ML- 2% - 15% - 40% - 100% - Strobe – Blink | No Memory

Each mode group works as described above – simply soft-press the switch (when on), to move through all the modes of that set.

When a "No memory" set is selected, this means the light always resets to 1st mode after 1 sec of being off. When a "Memory" set is selected, it means the light will always memorize the last mode after 1 sec of being off.

To switch mode groups, rapidly tap the switch 8 times (from on). The light will then enter the programming mode and begin to flash. While the beam is flashing, tap the switch the same number of times as your desired mode group above. The light will blink once and your new mode group will be memorized. Note that this mode set selection is retained even through battery changes.

In fact, the flashing after the 8 fast taps is actually a battery indicator - the number of flashes relates to battery voltage. Flashes go in steps of 0.1V above 3.0V. So, 12 blinks is fully charged (i.e., 4.2V), 1 blink is nearly depleted (i.e., 3.1V). As such, I recommend you use a fairly well charged cell when planning to reprogram the light. :rolleyes:

There is also a Turbo step-down timer, turned on by default and set to 5 mins continuous runtime. To reset this timer (or turn off), enter programming mode as described above (i.e., rapidly tap the switch 8 times). With the light in programming mode, tap the switch 30 times to choose the Turbo timer set mode. The light will then switch to 100% power. When the light is at the desired time for Turbo step down, turn the light off. The Turbo timer will then be set to this time. Note there is a maximum of 20 minutes. Setting a Turbo timer below 4 secs disables the feature.

The firmware has a (fairly novel) low voltage warning feature. If the voltage drops below 3V, the brightness is greatly reduced. That will bring the voltage up again a bit, which may cause brightness to rise again. But once the voltage of the drained battery falls down below that 3V level again, brightness will be reduced again, down to a low level. This low voltage step-down can be disabled by Vinh at the time of ordering, if desired (but is a useful feature if you are planning to use unprotected cells).

Video:

For information on the light, including the build and user interface, please see my video overview:



As with all my videos, I recommend you have annotations turned on. I commonly update the commentary with additional information or clarifications before publicly releasing the video.

As an aside, if you want to get an instant notification for every new review that I post here on CPF, you can subscribe to my YouTube channel (the vids go public at the same time). Just mouse over my logo watermark on the top right-hand corner of the video for the subscribe feature to open up. You may need to tap or click, depending on the platform you are using to watch. :wave:

PWM/Strobe

The DriverVN circuit on the SL2 appears to be current-controlled. I saw no sign of PWM in my testing, on any level. There was a high frequency circuit pattern detectable on my oscilloscope, but this was not visible to the eye. Here are some representative plots:

Moonlight:
SL2-ML-noise.gif


2%
SL2-2-noise.gif


15%
SL2-15-noise.gif


40%
SL2-40-noise.gif


100%
SL2-100.gif


As you can see, this high frequency circuit noise is ~15.6 kHz, and disappears on max. Here is another timescale resolution on one of the medium modes, to show it better:

SL2-40-noise2.gif


This may look familiar to reads of my reviews – I found exactly the same pattern on the Imalent DDT40 that I reviewed recently. :whistle:

Consistent with my standard review policy, I report on any oscilloscope signals that I can detect in the output of a light. But I can assure you that the above patterns produce no visible effect – even when shining on a fan. The SL2 was "flicker-free" at all levels in my testing.

Strobe:
SL2-strobe.gif


Strobe is a typical fast "tactical" strobe, of 16 Hz in my testing.

Blink:
SL2-40-blink.gif


Blink mode is an on-off flash, at just under 1 sec repeating sequence.

No Standby Drain:

Thanks to the physical reverse clicky switch, there is no standby drain when off.

Beamshots:

For white-wall beamshots below, all lights are on Max output on an AW protected 18650 battery (high-drain rated in the case of the V54 SL2). Lights are about ~0.75 meter from a white wall (with the camera ~1.25 meters back from the wall). Automatic white balance on the camera for cool white tints (to minimize tint differences), and Daylight white balance (Canon) for all dedome emitters.

SL2-Beam%20001.jpg
TX25C2-Beam001.jpg

Predator25-Beam001.jpg
Viking25-Beam001.jpg


SL2-Beam%20002.jpg
TX25C2-Beam002.jpg

Predator25-Beam002.jpg
Viking25-Beam002.jpg


SL2-Beam%20003.jpg
TX25C2-Beam003.jpg

Predator25-Beam003.jpg
Viking25-Beam003.jpg


SL2-Beam%20004.jpg
TX25C2-Beam004.jpg

Predator25-Beam004.jpg
Viking25-Beam004.jpg


The dedome (PDTc) version of the SL2 reviewed here has the classic tint shift common to dedome emitters. But it also has much greater throw – as you can see from above, the slim SL2 actually rivals (or beats) much larger stock XM-L2 lights like the Eagletac TX25C2 and Armytek Viking. I'm a little surprised as how well the SL2 does against the TX25C2, but I do have the slightly lower output Neutral White T6 version of that model.

Let's see how the SL2 compares to some custom dedomes from Vinh:

SL2-Beam%20001.jpg
S200C2vn-Beam001.jpg

LD50vn-Beam001.jpg
LD50vn-Beam005.jpg


SL2-Beam%20002.jpg
S200C2vn-Beam002.jpg

LD50vn-Beam002.jpg
LD50vn-Beam006.jpg


SL2-Beam%20003.jpg
S200C2vn-Beam003.jpg

LD50vn-Beam003.jpg
LD50vn-Beam007.jpg


SL2-Beam%20004.jpg
S200C2vn-Beam004.jpg

LD50vn-Beam004.jpg
LD50vn-Beam008.jpg


Basically, the SL2 is driven harder on a single emitter/18650 than the LD50vn is. The result is that output/throw of the SL2 (on 1x18650 high drain 18650) is somewhere in-between the LD50vn on 1x and 2x 18650. :eek:oo:

Since we are still in winter here in Canada, below are some indoor shots in my basement. For your reference, the back of the couch is about 7 feet away (~2.3m) from the opening of the light, and the far wall is about 18 feet away (~5.9m). Below I am showing a couple of exposures, to allow you to better compare hotspot and spill.

TX25C2-SL2-M22-Basement-10.gif


TX25C2-SL2-M22-Basement-25.gif


Again, the SL2 has a throw advantage over my Olight M22 or Eagletac TX25C2 (NW T6), with a broader and brighter hotspot.

S200C2vn-SL2-M2XUT-BasementBeam-10.gif


S200C2vn-SL2-M2XUT-BasementBeam-25.gif


Obviously, the SL2 can't compete dedomed lights with larger reflectors, but it is still an impressive amount of raw output (on high-drain rated 18650).

Testing Method:

All my output numbers are relative for my home-made light box setup, as described on my flashlightreviews.ca website. You can directly compare all my relative output values from different reviews - i.e. an output value of "10" in one graph is the same as "10" in another. All runtimes are done under a cooling fan, except for any extended run Lo/Min modes (i.e. >12 hours) which are done without cooling.

I have devised a method for converting my lightbox relative output values (ROV) to estimated Lumens. See my How to convert Selfbuilt's Lightbox values to Lumens thread for more info.

Throw/Output Summary Chart:

My summary tables are reported in a manner consistent with the ANSI FL-1 standard for flashlight testing. Please see http://www.flashlightreviews.ca/FL1.htm for a discussion, and a description of all the terms used in these tables. Effective July 2012, I have updated all my Peak Intensity/Beam Distance measures with a NIST-certified Extech EA31 lightmeter (orange highlights).

SL2-FL1-Summary.gif


As with all current-modded Vinh lights, you really need to use high-drain IMR/INR/Hybrid cells to see max output. The best performance that I saw was with an Efest IMR 18650 2500mAh (35A rated), supplied by Vinh. Frankly speaking, this is by far the most output I've seen in the 1x18650 class. :eek:oo:

:caution: I DO NOT recommend you try running this light on max on standard ICR cells. But in the interest of science, I thought I would try a limited experiment, just to see what happens, on lumen output on various types of cells.

SL2-Lumens.gif


As you would expect from the rated current draw limits, the Efect IMR 35A out-performs the Samsung INR 20R, which in turn out-performs the NCR18650PF IMR and the NCR18650A ICR. Although I am not showing initial activation, the Efest 35A was able to produce >1350 estimated lumens initially.

Interestingly, lower output levels are slightly different across the board. It really seems like the circuit is running on a percentage of the max output that a given cell can deliver. For example, the "15%" level is a fairly consistent ~20% of the initial max output that a given cell will produce, in my testing. :eek:oo: Overall, I would say the percentages reported by Vinh seem pretty accurate.

Output/Runtime Graphs:

I am not going to destroy a NCR18650A cell by during 100% runtimes, :rolleyes: but here's a comparison of the other cells to start:

SL2-Graph1.gif


The Efest 35A/Samsun 20R cells clearly do a better job maintaining initial max output. Once step-down occurs (set by default to step-down to 50% after 5 mins), there is not really a big difference between any of these cells. Basically, it just comes down to their stated capacity ratings.

You will note the largely direct-drive like pattern of the runtimes – except as the batteries drain significantly, at which point a step-down pattern emerges for really low levels. This would be the 3V low voltage feature described in the User Interface section.

Here is how NCR18650A does at lower levels:

SL2-Graph2.gif


You can see the difference with the Efest 18650 – the NCR18650A 3100mAh output is lower to start, on the 40% level. But runtime patterns again seem to be largely direct drive (i.e., determined by internal resistance of the Li-ion battery). This is generally quite efficient – and you will not be able to notice the gradual dimming over time.

Here is how the SL2 compares to other lights in this class, all on NCR18650A (except for 100% on the SL2):

SL2-Max18650.gif

SL2-Med18650.gif


There is definitely some minor loss of relative output/runtime efficiency, compared to the current-control competition (and despite the direct-drive like pattern here). But keep in mind that Zebralight, Olight and Fenix have the most efficient circuits out there - it is hard to fully compete on their playing field. The SL2 is still perfectly acceptable in my view, and performs at least as well as the good-quality PWM-based lights, like the Nitecore P10 and Sunwayman C25C-Ti.

It is interesting though that this is a similar level of efficiency and regulation to what I have seen on current-controlled Imalent lights - which also share the same high-frequency circuit harmonics seen here. I wouldn't be surprised if Vinh's DriverVN is sourcing similar components to Imalent's circuits.

The V54 SL2 does not run on 2x battery sources.

Potential Issues

Only 1x18650 Li-ion is supported, and high-drain IMR/INR chemistry is required if you want to run at 100% output.

The light is very heavily-driven on max, and gets quite hot quickly. You have the option to adjust how long it takes before step-down occurs (or turn this feature off). I recommend you leave it at the 5 min default (or shorten the time).

Light uses a reverse clicky switch, as forward clickies can't handle the current draw. This control interface is thus similar to electronic switch lights (i.e., click to activate), but you have the advantage of no standby drain here.

Light can roll easily in its native form

The DriverVN circuit offers a simple to use interface once programmed, and a wide range of potential mode sets if you want to reprogram. You will need the instruction sheet if you plan to reprogram the light, however.

Light shows a direct-drive-like regulation pattern.

Dedoming of the emitter (to increase throw) tends to produce a warmer overall beam tint. As expected the "premium dedome tint" (PDTc) gave a slightly green-yellow tint (although not as bad as the white wall beamshots would suggest). Long-term reliability of dedomed emitters remains an unknown.

Preliminary Observations

The SL2 is the first light I've reviewed from Vinh that is not a mod of an existing build – this a Vinh Nguyen light through-and-through. :) This has given Vinh more control over specific parts used, and the circuit/interface.

As with many lights that bear Vinh's signature, the SL2 that I received uses a premium dedome emitter (XL-L2 U3 PDTc in this case), and is driven to extremely high output levels. You can thank the extra copper heatsink for letting the light reach >1300 lumens on a single 18650. :eek:oo:

This of course bring up the immediate point that you are going to have use high-drain rated 18650 batteries in this light – standard ICR chemistry cells just won't cut it. And as my battery analysis above shows, the higher the maximum drain rating of the IMR/INR cell used the better. The Efest IMR 35A-rated 2500mAh seems like the best choice from among what I have on hand.

Thanks to the dedome emitter and high drive level, the petite SL2 can easily rival the beam distance of much larger 18650 lights, like the Olight M22, Eagletac GX25C2/TX25C2, etc. This is a very impressive showing for such a small light. :whistle:

In terms of the circuit, I like the range of mode sets provided in the DriverVN circuit. There is something for everyone here, with options for memory/no memory, Hi > Lo sequence, Lo > Hi sequence, and anywhere from 1-6 levels programmed (with or without blinking modes). :thumbsup: You also get to turn the automatic step-down from max on/off, and even manually set the duration before step-down occurs. There is even a creative low voltage warning feature, to ensure you don't accidentally over-discharge your unprotected high-drain cells (but will never leave you in the dark unexpectedly).

With all that going for it, are there any limitations? Well, I imagine some won't like the reverse clicky switch - although this is really more useful for the sophisticated programmable interface provided here. This is a very high-drain light, and forward clicky switches apparently can't handle these kinds of currents (i.e., there's a reason most high-drain lights this size use an electronic switch). Electronic switches are typically similar in interface to reverse clickies - but all have a standby drain (that the SL2 doesn't). :) The output/runtime graphs also appear to be direct-drive, meaning you are largely dependent on the battery chemistry for providing the apparent regulation.

Again, this is not a light for the uninitiated – you need to understand the basics of Li-ion battery chemistries, and use good judgement when running on max output. :sweat: But if you are seeking an output/throw screamer in a compact build, the SL2 is a clear leader in this field. For more information on this light, and your various options, please see Vinh's Sky Lumen 2 discussion thread here in the modders forum of CPF.

----

SL2 was provided by Vinh Nguyen (V54) for review.
 
Last edited:

Capolini

Banned
Joined
Aug 4, 2013
Messages
5,945
Location
Valley Forge, Pa.
Thanks SB

I have the original version,,,,,,Eagleye X2vnT XML2 PDT. I use the Efest Purple 35A which work well.It is a very impressive, compact and powerful light. A great Secondary Dog walking light to start my mini hikes w/ Capo!


Edit: Upon further review I did notice a definite improvement with this light compared to mine. The "spring" in the head. Mine was a solder blob that was tapered which I sanded down and flattened to prevent further denting to my batteries.

Maybe I had something to do w/ this improvement! I know I complained about it and recommended what this light now has.
 
Last edited:

SoundWorx

Newly Enlightened
Joined
Jan 3, 2013
Messages
24
Location
SC
Uh oh, I think I'll be needing this light in the near future. :sssh: Thanks sb and V54.
 

lumentia

Enlightened
Joined
May 13, 2014
Messages
913
Location
USA
Selfbuilt, thanks for the review! Very nice in depth analysis.

Quick question: would it be possible to test on the 5% and 10% settings? I just noticed there's a large gap between 2% and 15% in this chart.
SL2-Lumens.gif
 
Last edited:

lumentia

Enlightened
Joined
May 13, 2014
Messages
913
Location
USA
Selfbuilt said:
There are raised areas on two sides of the switch, serving as lanyard attachment points (and allowing for stable tailstanding). Screw threads are regular triangular cut, and anodized in the tail region for lock-out.

V54-SL2%20021.jpg


The threads in the pic above look like stub acme (what people here call square cut or trapezoidal) in the pic but maybe it's just an optical illusion.
 
Last edited:

lumentia

Enlightened
Joined
May 13, 2014
Messages
913
Location
USA
I know it gets said a lot but feel I must point out again that your reviews are top notch, very well put together and unbiased. We here at CPF always look forward to new Selfbuilt reviews.
So that being said, just one more comment, I promise I'm not picking on you:D
Selfbuilt said:
For white-wall beamshots below, all lights are on Max output on an AW protected 18650 battery (high-drain rated in the case of the V54 SL2). Lights are about ~0.75 meter from a white wall (with the camera ~1.25 meters back from the wall). Automatic white balance on the camera for cool white tints (to minimize tint differences), and Daylight white balance (Canon) for all dedome emitters.
Why change [from your usual practice of automatic white balance] with dedomed but not go ahead and show the same representative daylight balanced beamshots for the other, dome on lights to show the natural tint variations of those as well?

I feel the dedomed tints in your photos look really green and all of the dome on lights look perfectly white. Does that represent what you see in real life?
 
Last edited:

selfbuilt

Flashaholic
Joined
May 27, 2006
Messages
7,008
Location
Canada
Quick question: would it be possible to test on the 5% and 10% settings? I just noticed there's a large gap between 2% and 15% in this chart.
Yeah, I just ran out of steam after awhile, once I saw that the percentages were pretty consistent and accurate. If I get a chance later, I will update the table the remaining couple of modes not tested.

The threads in the pic above look like stub acme (what people here call square cut or trapezoidal) in the pic but maybe it's just an optical illusion.
It's hard to say, because they are so fine. While they do look square in that pic, under lighted magnification, I can see a "sheen" that seems to rise in the middle of each thread. But that could be a very subtle triangulation of an otherwise square cut thread ... I think either term would be acceptable here.

Why change [from your usual practice of automatic white balance] with dedomed but not go ahead and show the same representative daylight balanced beamshots for the other, dome on lights to show the natural tint variations of those as well?
I feel the dedomed tints in your photos look really green and all of the dome on lights look perfectly white. Does that represent what you see in real life?
Yes, because there is a huge difference between the dedome emitters and standard dome-on cool white emitters. Tint variation between cool white emitters is pretty minor, so I originally opted for automatic color balance so that it wouldn't be distracting to viewers of the beamshots. But once neutral/warm white and dedome tints came along, I realized that was a problem - if I use automatic white balance, they will look exactly the same as cool white tints. That would be very misleading. So at the end of the day, I've opted to keep all neutral/warm/dedome tints on my camera's daylight white balance, but continue the standard cool white on automatic (to be consistent with previous reviews).

In practice, I don't find the dedome lights are quite as green as shown in the images - but that's because the brain does a lot of adjusting and filtering in real life. There is no single white balance that can show everything consistently with how we see it. So instead my goal is to be consistent in how it is presented in the reviews.
 

Capolini

Banned
Joined
Aug 4, 2013
Messages
5,945
Location
Valley Forge, Pa.
Last edited:

lumentia

Enlightened
Joined
May 13, 2014
Messages
913
Location
USA
Thank you self built for your excellent reply to my q's. Makes sense now :thumbsup:
With your simple explanation I've found its not necessary to have the actual numbers when a simple calculation will do. It seems all the percentages for the brightness levels when using the 35a efest cell(except turbo, or 100%) can be figured by assuming an approximate theoretical 1600 lumen maximum (even though the circuits and perhaps the cell isn't able to supply that much wattage when in 100% mode.

So 10% of 1600 is 160 and 5%= 80 lumens. Works for me :)
 
Last edited:

InfinitusEquitas

Flashlight Enthusiast
Joined
May 18, 2011
Messages
1,656
Location
20 Minutes From NYC
I'm really impressed. By both the excellent review, as always, and the phenomenal little light.

I may have to reconsider my EDC (which is currently an SC52w, but is normally the SC62w).
 

thedoc007

Flashlight Enthusiast
Joined
Feb 16, 2013
Messages
3,632
Location
Michigan, USA
Just a pic for those considering stripped anodizing:

DSC00109.JPG


This is the X2vn, but obviously the body is the same. I really like the look of the bare aluminum...almost a "stone" finish.
 

arnold ziffle

Newly Enlightened
Joined
Dec 21, 2005
Messages
127
Location
sacramento ca
I got my info from baditude on ecf.
icon1.png


This is old news to me.

I've been cautioning vapers for months here on ECF that Efest (and vendor resellers) has a history of exaggerating the specs of ohms and amps on their battery spec sheets. Much like the exaggerated specs that Trustfire, Ultrafire, and Surefire do for their batteries, once independent testers bench test the batteries or unwrap the batteries to see what is beneath the skin, the advertised specs are proven to be exaggerated.

I wasn't surprised to find out that the purple Efest 2100mah 30 amp battery was a re-wrapped Sony 2100mah 30 amp battery. Nothing wrong with that, as many manufacturers re-wrap cells made by other manufacturers (ie AW and Orbtronics).

Purple Efest 30 amp battery is same cell as Sony VTC4 30 amp battery

Purple Efest 30 & 35 amp batteries?

However, when Efest labels their purple 2600mah battery as being a 35 amp battery, and then we find out that it is a LG18650HE2 battery (which LG claims has only a 20 amp continuous amp rating), then that's being disreputable and deceiving in my mind. These batteries are being marketed to vapers who sub-ohm and there's a big difference in 20 and 35 amps; especially if someone is counting on those extra 15 amps as a safety cushion.

The EH brand 18650 2500mAh advertised at 35A are also rebranded LG18650HE2 20A.

Now the above revelation that the purple Efest 3100 mah advertised to have 20 amps is found to have only 4 - 6 amps continuous is even more appalling.​
 
Last edited:

blah9

Flashlight Enthusiast
Joined
Mar 10, 2011
Messages
2,105
Thank you for the review, selfbuilt! Your work is always very informative and has made a big difference in many of my light purchasing decisions. This is a very cool light, Vinh. Somehow I missed this when it came out. :)
 
Top