GEOTHERMAL heating—using the warmth of the Earth's interior to heat water—is an old idea. Using the planet's natural coolness, though, is something of a novelty. Nevertheless, as cooling and heating are merely two ends of the same process, it could save money and reduce carbon-dioxide emissions. As long, that is, as you can find a suitable source of cold.
Fortunately for Toronto, it sits next to a very large supply of the stuff, in the form of Lake Ontario. Canada's largest city has been pioneering the idea that instead of using electricity to power air conditioning, a useful supply of cold can be directly extracted from the environment.
Three large pipes have been run 5 kilometres (3 miles) into Lake Ontario, to a depth of 83 metres. The water at that depth is a constant 4°C, its temperature protected by a layer of water above it, called a thermocline. The water is piped to a filtration plant and then to a heat-transfer station on the lakeside. Here the chill is "transferred" to another closed loop, consisting of smaller pipes that supply the towers of the city's financial district.
http://www.economist.com/science/tq/displaystory.cfm?story_id=9065015
Fortunately for Toronto, it sits next to a very large supply of the stuff, in the form of Lake Ontario. Canada's largest city has been pioneering the idea that instead of using electricity to power air conditioning, a useful supply of cold can be directly extracted from the environment.
Three large pipes have been run 5 kilometres (3 miles) into Lake Ontario, to a depth of 83 metres. The water at that depth is a constant 4°C, its temperature protected by a layer of water above it, called a thermocline. The water is piped to a filtration plant and then to a heat-transfer station on the lakeside. Here the chill is "transferred" to another closed loop, consisting of smaller pipes that supply the towers of the city's financial district.
http://www.economist.com/science/tq/displaystory.cfm?story_id=9065015